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The stability af a thin, elastic t spherical shell with absolutely fixed supportcon- 
tour loaded by a uniform extarnal pressure is examined witbin the frsmework of pert- 
urbation theory in the Koiter-Pitch form /I,Z/. The state of stress and strain, 
the stability, and the bifurcation of the equilibrium modes for which the lifting 
capacity Of the shell is not exhausted are investigated. 

The analysis is limited to pressures of the form 

$' (PI 2. 611 (,1 -i /r 

Here fi is a small numerical parsmetex, :1(r) is a function of the poJ.ar radius r that charact- 
erizes the pressure distribution over the shell meridietn? and p is .e scalar parameter on the 
order of ma, where amng its numerical values a sequence of eigenvakues of the appropriate 
nonlinear boundary value preb&&iu linearized in the neG#borhood of the axisymmetric solution 
is considered. 

As is known, substantial discrepancies are observed between the upper critical pressures 
obtained according to a geometrically nonlinear theory and the date of precision experiments. 
The critic&. pressures determined experimentally are, ae a rule, below the first eigenvalue 
tin absolute value). The lower critical pressures are obtained because of gecaaetric inprarfec- 
tions in the middle surfaCe, the formation of domains in the shell in wbfch physicatly non- 
linear phenomena are essential,, the influence of a "wall-~Fckness-variation" factor, etc. 

Data (see /3--71, say) are also known that show that the critical pressures can exceed 
the corxesponding results of theoretical investigations. Such results are obtained if the 
loading is quasistatic, the deviations in the radius of curvature do not exceed 0.01% at 
separate pcints of the shell surface , and variations in the shell thickness do not exceed1.5%. 

It should be noted that there are significant discrepancies between the data of precision 
experiments of different authors. Firstlyt a spread in the critical pressures is observed, 
that reaches 20% in a numtPer of cases. Secondly, some? researchers observed nonaxisymmetric 
buckling models under loading f3,4,71', and others only axisymmetric modes f6/. These and analo- 
gous experiments permLtted the advancement of several hypotheses. 

lo. Since the critiml pressures corresponding to shell snap arc determined during the 
experiments /3,4/, then a disagreement between the first eigenvalue p* and the pressure pa at 
which snap occurs, probabXy holds, i.e., nonaxisymmetric equilibrium modes branch off in the 
neighborhood of the bifurcation point psi but the lifting Capacity of tie shell is not exhau- 
sted 131. In this case the shell. Can perceive a pressure exceeding the first eigenvalue. Eow- 
ever, it is &own in 191 that p*-P * holds in the problem under study for those values of the 
geometric parameters at which nonaxisymmetric bifurcation is possible. 

2'. According to /10,11/, only axisymmetric solutions branch off in the neighborhood of 
the bifurcation points (**), In this case, the critical pressures in the precision experiments 
should agree with the corrasponding branch points of the boundary value problem Of nonlinear 
shell theory in an axieymmetric formulationr and their existing defects are reduced aomeshat 
under real conditions, As a rule the results of /llj are used for a foundation of this view- 
point. 

It is shown below that the stability of a thin shell is responsive to the form of the 
function q(r). For a given fixing of the support corkmar, the shell buckles in a snapping 
mode for some kinds of functions n 3 q,(r) , bifurcation is observed for other kin& q = q2 (p), 
but the shell Carrying capacity is not exhausted. A function I)= &b(p) is deteYXifned for which 
branching off of the non&xisymmetric modes from the axisymmetric solution oCCu?S without snap- 
ping for all the nonaxisymmetrric bifurcation points. Under real conditions the distribution 
of the perturbing pressure depends on the structural features of the experimental apparatus, 
the loading method, etc. C&e of the reasons for the discrepancy in experimental data can 

*Prikl.Matsm.Mekhan.,44,No.6,1076-1086,~g8O 

**) Pogorelov, A-V., On spherical shell buckling modes. DokL. Vses. Konf, PO Teorii Obolochek 
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Asymptotic analysis of nonaxisymmetric equilibrium modes 769 

therefore be the fact that different critical pressures, corresponding to different buckling 

modes, are realized in experimental investigations. 

1. Fomlation of the problem. The equilibrium and strain compatibility equations 
of the geometrically nonlinear theory of a shallow, elastic, spherical shell whose middle 
surface is identified with a plane, have the following form in dimensionless variables 

~A% = L (w, Cu) + 6A@ + p (T), ILAW =- ‘l,L (in, w) - l3&r, p = h / ay < i 

L (w,cD) = w"(Wi r + 5": 9)-t CD" (w' ! r + w" / IJ) - 2 (W / r - CD”) (w’ , r - w")/ r? 

( )' = ai aq, ( )' = a / ar. ~72 = 12 (1 - r2) 

(1.1) 

Here wis the normal dispalcement, il) is the Airy stress function, P(r) is the external 
pressure, h is the shell thickness, a is the planform radius, Y is the Poisson's ratio, 6 = 
n 1 R is half the shell aperture, R is the radius of curvature, and (q,r) are the polar co- 
ordinates. 

The dimensionless quantities in (1.1) are related to the dimensional quantities marked 
with the subscript d by means of the formulas (E is Young's modulus): 

@, (rd) = Eh2p (p)/ (a*?), @)d = EhaQ, / y, w,j = OW, rd = cZr 

We supplement the system (1.1) by the boundary conditions 

a)r=1, w=w'=O, CD"-v(Q'+@*)=O 

W' -v(D" - CD'+ W' -2W)+2(1+v)(~'+~~)+v~--_--_=rl 

(1.2) 

b) r = 1, u' 5 w' = 0, IjI' + @," = @" - 0' =o 

Conditions a) and b) correspond to rigid clamping of the support contour and sliding clamping. 
The energy functional of an elastic shallow spherical shell has the form 

(1.3) 

E, = ul’ + 0rw’ + V2 (w’)*, xI = -w” 

PEW = 111 t- U2’ + Iit (W‘)* i r, rxo = -w’ - w” / r 

2rE w = ul' + ‘4 - ut + 0rw’ + w’w’, xlc 5 -(w”’ / r)’ 

ro, = tb,’ + W / r, cro = O”, ra,, = 0,’ / r - U’ 

% - P (‘Jr - VU& Eg = I” (09 - VG), Erq = p (1 + V)Um 

Here 1% ~2) are tangential displacements, and I&, M,, K, are radial, circumferential, and 
twisting moments. 

2. Method of solution. Let us assume that in the continuation of the solution inthe 
pressure density parameter 6, the vector of the solution V - {w,(B) and 6 can be expanded 
in series in integer powers of E, in the neighborhood of the branchpoint 

v(r,~,~)=V0~r,~)-t- fiE”Vntr.cp), 8=5E”6, 
(2.1) 

n==, -1 

where the representation (2.1) is valid at least in the asymptotic sense as Here 
V, (r,6) 

c+‘O. 
is the axisymmetric mode from which the solutions branch off and contain small non- 

axisymmetric terms ETiV For each of the boundary conditions (1.2), the vector-function {wO, 
a,) is defined by the lelationship 

satisfies the nonlinear boundary value problems for the ordinary differential eq- 

(2.2) 
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Substituting the expansion (2.1) into (1.1) and the boundary conditions (1.2), and then 
sequentially retaining terms of the first and second degree in 5, we obtain boundary value 
problems to determine VI and V,. Expanding VI into a Fourier series and making the change 
of Variable Vltn (F)= r"&, (r) in each coefficient of the Fourier series for VI,,, , 
that Z,(r) =i {W,, PA will be elgenvector-functions of the spectral problems 

we cbtain 

~.rd,,~W,, - T,” F, -t r;” w,,, ~J&,~F,, = -T,” W,, i2.3) 

Z," = 0, r=o, k=1.3 

a) F = 1, w, = w,’ = (c,” + ovr”)F, = M,s”F, = 0 

b) r = 1, 2, = Z,' = 0 

A,, = ( )" -I- (2n + 1) / r, T,” = @A,, + /3’E,” + @cp” 

I‘,” = qcpn + $‘E,“, c,” = [( )” + 2n / r + (n* - n) / rl / r 

E,* = (n - nz) / rJ + ( )’ / r, ov,” = Y In (n - 1) - ( )‘I 

M,” = ( )“’ + 3n ( )” f (n* - 1) (I - Y) - 3n + n (1 - n”) 

(1 + v) 

II w, UC. = p, n = 2, 3, . . ., N 

The pressure on the shel.1 outer surface p, which enters implicitly into (2.3) in terms 
of the components of the vector function (fi,$} is the spectral paremeter in eigenvalue prob- 
lems. 

Let us substitute (2.1) into (1.1) and (1.2) and require that the residual be on the 
order of O(ga), a>2 , as E + 0 in satisfying the equations and boundary conditions. We 
hence obtain inhomcgeneow partial differential boundary value problems for V,. Analysis 
of these latter shows that if p E {p,,}, where p,, is an eigenvalue of the problem (2.3),then 

V* for each n is representable in the form 

Vin(Fl 9) = r*“G, (r) cos 29 + s H, (t) dt , G, 0-J = (5. (n, rL 0 Oh 81, H, (4 =i {g (n, rh f (n, r)} 
0 

where (7, o), {g, f) is the solution of the following boundary value problems 

pAan% = T,% + rrs9 + a, pAnnzo = -T,% + 5. G,(Q (0) = 0, k = i. 3 (2.4) 

a) r - i, T (n, r) = r' (n, r) = M..2n w (n, r) = (cvzn + uvrzn)m (n, r) = 0, b) r = 1, G, = G,’ = 0 

wh=W-l-Bf+@riP3 PM = -_(@r -I- B)g + s, g (0) = j (0) = 0 (2.5) 

a) r = 1, g = f' - vf = 0, b) r = 1, H, = 0 

a = V1 (ZF* [F,W"" - F,W,'r-* - W, (Fn’r-l - F,“)] + 

4n+W,‘Pn’ + r-l (W*“F,’ + F,“W,‘)} + n*r”F,‘W,’ 

< = -rv2 [ (Wn’)*n (1 + n / 2) + lW, (W,” - r-SW,‘) / 2 + rW,‘W,” / 2i 

Q = F*” (W,‘F,’ + l [F, W,’ + w,F,‘] / F + 2nr-‘~F,Wn} ! 2 

S = -F** (2nlF-1W,a f (W,‘)* f 21reLW,,‘W,} / 4, n = 2, 3 . . . N, 1 E R - n* 

Therefore, the problem (1.11, (1.2) formulated is reduced to a recurrent sequence for 
each of the boundary conditions a) and b), consisting of the boundary value problems 1) for 

the nonlinear ordinary differential equations (2.21, 2) the eigenvalue problems (2.3), and 3) 
for the systems of linear inhomogeneous equations (2.4) and (2.5) in which the solution of the 
problem (2.2) enters into the coefficients and the eigenvector-function (W,,,F,} into thein- 
homogeneous parts a,c,Q, S. 

Remarks. 1’. The solutions G,(r),%,(r) are known to the accuracy of a constant that is 
determined by the Liapunov-Schmidt method. 

2O. Let E, be the Hilbert space of the two-dimensional vector functions 2 = (z.1. *a)* 

y = (yl,yP),... with the scalar product 

The scalar product cV,,Vj> equals zero for i> 2. Therefore, the expression 

5 = ,v - v,, v,, / <VI, v,, 
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can be a formal definition of the small parameter :. 
Let us investigate the power serj,es (2.1) for 6 under certain constraints. Let the shell 

be subjected to the pressure 

p (4 = P -I- so (4 

where p is the uniform external pressure equal to one of the eigenvalues (2.3), and n(r) is 
a sufficiently smooth function satisfying the condition 

Let u, E, U, be, respectively, the generalized stress, strain, and displacement, and let 
L, and L, be linear and quadratic differential operators in II. Then within the framework 
of the geometrically nonlinear theory in a "quadratic" approximation, the function E and its 
variation 6~ take the form 

a = L1 (U) + 'i,L, (U), 6E = L, (NJ) + L,,(U,inJ) (2.6) 

Here L,, is a bilinear differential operator. Let us expand U in a series analogous to (2.1). 
From (2.6) we have 

a = so + E IL, (U,) + L,, (U,, U,))+ f'[L, (U,) +L,, (U,, Ur)+ 'i,.& (U,)) + E3 IL, (U,) + L,, (U,,U,) + (2-7) 

‘%I (uo, us) + . . . 1 + 0 (p), 6E= b-t- 3 EkL,l (u,, 6u) + 
k-1 

0(E4) 

We convert (2.7) by replacing U,(p + 611) by a segment of its Taylor series in the neigh- 
borhood of the point p E {p,). We then obtain 

E = Eo -!- iEl + E’E, + %3 f 0 (E’) (2.8) 

aa = L, (U,) + 1/&* (U,), El = L, (U,) + L,, (U,, U,) 

EZ = L, (W + 6,Ln (qGb, w + L,, (U,, U,) + VPLl (U,) 

Es = L, (us) i- &‘%I (‘lui%, u,) + ‘i,6,‘L1, (fl*U:,P, U,) + 

Vu (nU6fb, U,) i- L,, (U,, U,) + L,, (U,, U,) 

Here () c’, k = I,2 are Fr&het derivatives of order k with respect to p. 
Let us assume that the equilibrium of the generalized stress a and the pressure p is 

assured by the condition 

c deds- j ptiud.9 (2.9) 
E; 

Here S is the shell middle surface. Then by using the Hooke's law U! = T&i, i = 0,...3, the 
kinematic and static relationships from (1.3) and (2.7)- 
n = o,... 3 

(2.9), we group the terms for g", 
sequentially in (2.9). We obtain a variational formulation of the problems (2.2) 

and (2.3) in a zero-th and first approximation. Weexpand u, and U0 in a Taylor series in 
powers of n (r)& We replace 6U by U,, and taking into account that 

we find condition (2.9) in the asymptotic form 

&&En=0 
’ Ass si WI -k 01 [-g 

6 

4 Wl) -i- Ll (Us) + Lll (Uo, us,] + G&l (Us, Ul)) ds 

(2.10) 

A,=! {b&h+ OILLI~WI, W+ L~(Us)+Llr(uo, %)I + ao~n(U3, Uz)+az(U~))ds 

B, = ~6, P rlLe W,) + 2a,L,, (u,, qu;, @) 

Equating the coefficients of 5% and Es 
tion of the eigenvalue problem, 

to zero in (2.10) and using the variational formula- 

6 in the form 
we determine the first two terms of the expansion (2.1) for 
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The expression for Jo has been found here by using identity transformations of the problem 
(2.5) and the problem obtained by differentiating the equations and boundary conditions in 
(2.2) with respect to the parameter 6. 

It fo~bws frau (2.11) that three cases are psstible for a 8 -neighborhood of the bifurc- 
ation point p'- 

al St> 0. In this case the nQitw~synIRietriC SolutiOn axists for 6>-U, i.e., the sheli 
is able to sustain the pressure p>p* , and the nonaxisymmetric equtlibrium mode can, if it is 
energetioally suitable, be observed in the static state. 

b) &<=o. Bifurcation of the nonwisymmetric mode is accompanied by snapping and it is 
impossible to observe the mode branching off in a static formulation. 

cf 6% =O. To analyze buckling, the last terms in the series (2.1) for 6 must be taken 
into aocount. 

It foloslows from (2.11) that only the solution of the problems t2.33-- 12.5) enters explic- 
itly into J , while Jo depends also on ? 6% i.e. I on the loading method, the structural 
features of the apparatus being used, etc. If g(r) is a sign-variable function, than the sign 
of t&, meaning also the buckling mode, depends on the distribution of a small perturbing 
pressure &l(r) over the shell opening in the neighborhood of p *. 

3'. For numerical integration, the boundary value problem (2.2) was reduced to two 
Cauchy problems (a z i@ @). tp ir)tf 

Here f is a two-dimensional vector function representing the right sides of the system of dif- 
ferential eqitations solved for the highest derivatives, *...a are unknown alignment para- 
meters, T+ and r_ denote the function u for o<P<~/~ and 'is<r_c5 1 , respectively. The 
problems 1) and 2) were integrated by the Runge-Kutta method. The alignment parameters are 
found by the Newton method from the adjoint conditions 

r E= 0.5, e e 1, i I.+(k) (s,, %J - 1._(k) Cq, $1) /jR2 < E. k== 0,l 

The linear problems (2.3)- (2.5) were solved analogously. The S. G. Godunov procedure 
for raising the accuracy of the computation f12/ was hence used to Integrate the Cauchy prob- 
leme of the type 11 and 2) for the systems 12.3f, (2.4). The quantity of paints at which the 
Gram-Schm&dt orthogonalization was performed was eight. Their coordinates 9(i= 1...8) were 
determined automatically from the condition II IY* h) //p>n(m= 0.3). In analyzing the problems 
(2.3)- (2.5) a system OF linearly-independent vectors was constructed. and then the general sol- 
ution was found from a linear combination. The eigenvtnlue was determined from the vanishing 
of the appropriate determinant, 

4O . As r --c) ,the coefficients of the equations have a singularity, hence f5r r -z io, Jrf 

the solutron of the problem 12.2)- 12.5) was replaced by a segment aE a Taylor series. The 
quantity h, varied between 0.11-0.27. 

3. Numerical results. It was assumed v =: 0.3. in the computations. The functions 

g* (4 = 1.6B"103g(r) and g** (r) = 3.33.iU*g(r) for rigidi and moving clamping are psesented 
respectively, in Figs.1 and 2. The numbers of the curves corres_pond to the number of the 
eigenvalues. Curve 4 in Fig.1 corresponds to values of the parameters h = 8.52, p= 0.76, curve 
8 to A = 14, p = 0.78 (here and henceforth, X'= 9/&. In Fig.2 n = 6. h = 11, p = 0.34; n = 
6, h = 16, p -0.32; 12 =a, a. = 19, p = 0.30. It is seen that for the boundary conditions being 
considered g(r) is an oscillating function for which the number of zeroes will be the greeter, 
the greater the h. For large h (see curves 6 and 8 in Fig.2, for example), the functiong(r) 
has a definite edge effect, in particular, the points af maximal and minimal values shift to 
the support contour as X grows. Therefore, in the neighborhood of the eigenvalues of the 

problem (2.31, the spherical shell Ls quite responsive to the kind of perturbing pressure. 
Two domains exist in a shell (this is the neighborhood of the points A and B for the merid- 
ian being consfdered) at which the change in '1 fr) affects the buckling method especiallystrong- 

lY- FOX tJQ.n shells the behavior of q(r) is essential primarily in the edge effect zone. 
The dependence of the Kciter parameter b = 5.10" da on h is showninFiq.3 for the prob- 

lem (2.3), b) - (2.5),b). The numbers of the curves here correspond to the nuntiar of the 
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eigenvalue n, q (r) = 1. It is seen that b is a negative continuous function of h for fixed 
n . The function b(h) is multivalued, and its branches are determined by selecting n. The 
transition from one branch to another in the domain under investigation is possible only by 
a jump whose minimal value diminishes as X grows. It follows from the results presented in 

Fig.3 that shells with mowing clamped support contour buckle by snapping when 7.6 < h< 21. 

A 
d 

b 

Fig. 3 

The deflections x, = 103enPW,, (es E "/p. ea = 6frs, e* = "&f are presented in Fig.4. The 
clamping conditions and numerical value of n,h,p axe the same here as in the example illust- 
rated in Plg.2.1 

An assumption that the relationship 1 t+” I<* 1 uy,’ [ holds in the support contour zone of 
width O(p IIn ~1) is used in a number of cases in an asymptotic analysis of the Marguerre- 
Vlasov equations. fts verification at some point of the edge effect zoner for instanceatthe 
point C, shows that IWG‘ \> t w,' j. Therefore, the assumption notsd can induce a signifi- 
cant error into the asymptotic analysis of shells with a finite, albeit large a (h .-%+ 20). 

!ihe eigenvalue distribution of the problem (2.3) ,a) is characterized by the dependence 
n (P,~) presented in Fig.5. The solid lines are the data of a numerical computation, and the 

dashed line is the result of asymptotic integration of the spectral problem (seeSects. and 2). 
No constraint is imposed here in the asymptotic analysis on the quantity of waves in the cir- 
cumferential direction /13/P), The curves marked with the numbers 1, 2, 8 correspond to the 
values h = f2,35,18. It follows from the results presented in Fig.5 that rapidly and weakly 
oscillating haves, described by two branches of the function n@,] can appear on the shell. 
Kere the quantity of waves correspond.$ng to one branch grows with the rise in pressure and 
that of the other branch decreases. Small nwnaxisymmetric equilibrium modes are constructed 
for each pn by the Liapunov-Schmidt method. 
value, 

It turns out that if p,& is a simple elgen- 
then two nonaxisymmetric equilibrium modes containing an identical number of modes in 

the circumfexential direction but with the points of their maximal normal displacements shift- 
ed in the circumferential direction by the phase a ;=x! 
mode. 

R f branch off from the z&symmetric 
Investigations of the nonaxisymmetric modes for each point of the spectrum (p,) showed 

*) Larchenko, V. V., Nonlinear stability and estimate of the efficiency of the asymptoticmeth- 
od in elastic spherical shells for different boundary conditions. 
tation, Roetov-on-Don, 1977. 

Wmmary of Kandidat Disser- 
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of non&U.Symmetric solutkons branching off which have a differ- 

nonmonotonfcally as x irXcrease5, and is determined pCor iarge 

where f*] irk the integ@X paxt of the RW&W. 

longs tC the beginning OP the spectrum 
If 1 is fAxed, and p -is a multiple Q&hi@ and be- 

(~~1, then net more than two aMdes containing a dif- 
ferent n@rr of nonaxi%yElaetrrLc no&S branch off from the axisynnnetrfc solution. Here if 

P = Illi%! bhh then the numbers 0P WWes in the Circumferential rlirection that axe referred 

to the two different m&630, differ by one. If the Pfrrt eigenvaLue is simple, and h is suf- 

ficiently laiT$a, then the corresponding quantity of WW~O can be obtained by an asymptotic 

method. Tbfs confirms the comparison bsrtween numeriCaJ, JI3,14/ an8 asymptotic re~U_lts, This 

latter rasuits in an asyarptotic formuls for the quant%ty of w3ves of the form 

QXspsmring the asymptCtic results obtained ~itb We results of tie nonlinear theory in a 

nonaxisymmetric formulation shows than &?x all I far which the nWkU&puetric bifuxcation 

holds, the first critic& pressure of the problem (Z.j),a) is determined by an aqv@Cat$c m@- 
‘&od with 2~8s than 6% sfror. 

Let US note that the difference het~eex & and .&+E at the be$&rkning of tba SpeCZrum is, 

as a rule, coneiderably Xess than the anaIoqoue quantity far from the first eigeavatue, Wis 

is valid also for the problem G%3ftbl. 
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An analogous analysis for 7.6~ b< 2O.i showed that the Koiterparameters corresponding to the 
rapidly oscillating waves, are as a rule more responsive to a change in a, thantheparameters 
corresponding to slowly oscillating waves. 

In a number of cases, axisymmetric equilibriummodes/6/ were observed in a precision ex- 

periment. A comparative analysis of the numerical results and the data in /6/ showed that 
the experimental values for the normal displacement agree qualitatively with the computation 
results. Thus, for ~=0.~,h=l.3mm,a=i50mm,v=0.4,and p = 0.70, the normal displacement w.~ 
at the pole of the shell is 0.225 mm, and measured in the experiment is 0.21 mm. For points 
at which the displacement takes on its maximum value, these quantities are 0.43 and 0.48mm, 
respectively.For 90 mm a;~,~--ii50mm no discrepancy is detected between the computation and 
the precision experiment results. For points at which an abrupt change in the shell deflec- 
tion is observed, the experimental values of the displacement exceed the computed values by 
-3O",,. 

The strains Ed and e, were compared for the same shell for p =0.94 . The measurement 
results here lie -15% either above or below the computed data, depending on the coordinates 
of the point under investigation. 

Let us turn attention to an interesting fact detected in experiment /6/ and confirmed by 
numerical analysis. A sufficiently thin shell with a rigidly clamped edge is stretched in 
the circumferential direction in a small zone at the support contour. 
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